首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   313篇
  免费   4篇
  国内免费   2篇
化学   249篇
晶体学   3篇
力学   25篇
综合类   2篇
数学   15篇
物理学   25篇
  2021年   4篇
  2015年   3篇
  2013年   12篇
  2012年   13篇
  2011年   18篇
  2010年   5篇
  2009年   16篇
  2008年   20篇
  2007年   11篇
  2006年   9篇
  2005年   21篇
  2004年   15篇
  2003年   7篇
  2002年   7篇
  2001年   9篇
  2000年   9篇
  1999年   7篇
  1998年   7篇
  1997年   6篇
  1996年   4篇
  1995年   4篇
  1994年   8篇
  1993年   3篇
  1992年   5篇
  1991年   7篇
  1989年   2篇
  1988年   3篇
  1987年   2篇
  1986年   3篇
  1985年   3篇
  1984年   4篇
  1982年   7篇
  1981年   3篇
  1980年   2篇
  1979年   2篇
  1978年   2篇
  1977年   6篇
  1976年   2篇
  1975年   2篇
  1974年   4篇
  1973年   3篇
  1972年   2篇
  1971年   2篇
  1968年   7篇
  1967年   2篇
  1966年   3篇
  1965年   2篇
  1962年   4篇
  1961年   2篇
  1960年   2篇
排序方式: 共有319条查询结果,搜索用时 46 毫秒
311.
A kinetic approach to the polymer reaction, with KOH as catalyst, between ethanol and poly(p-vinylphenyldimethylsilane) containing silicon–hydrogen as a functional group on the side chain was carried out. The rate equation was obtained by measuring the initial rate of the model reaction as v = k[KOH] [SiH] [EtOH] in benzene and v = k[KOH] [SiH] in methyl ethyl ketone. It was observed that the rate of reaction was affected by the polarity of the solvents. In the polymer reaction the rate constant decreased markedly with increasing ethanol concentration. A change of viscosity of the polymer in various solvents was observed to have a good correlation with the decrease in reaction rate in corresponding solvents. In mixed solvents, consisting of both good and poor solvents for the polymers, the reaction rate depended upon two factors, the entanglement of the polymer chain and the polarity of the solvents. The equivalent globular model of the polymer chain is suggested for study of the polymer reaction. A schematic local-distribution curve of the reaction species is proposed.  相似文献   
312.
The fluorescence quenching by oxygen of 9,10-dimethylanthracene (DMEA) in liquid ethane and propane at pressures up to 60 MPa and 25 degrees C was investigated. The apparent activation volumes for the quenching rate constant, k(q),DeltaV++(q) , were 5.0 +/- 3.4 and 7.4 +/- 1.0 cm(3)/mol, whereas those for the solvent viscosity, eta,DeltaV++(eta) , were 190 +/- 22 and 42 +/- 1 cm(3)/mol in ethane and propane at 6.0 MPa, respectively. These results were discussed together with those in n-alkanes (C(4)-C(7)) and methylcyclohexane (MCH) that were previously reported, and it was found that DeltaV++(q) increases monotonically but DeltaV++(eta) decreases rapidly with increasing the number of carbon atoms in n-alkanes. The plot of ln k(q) against ln eta showed a leveling-off with decreasing eta. These observations were analyzed satisfactorily by the pressure dependence of the solvent viscosity on k(q) coupled with that of the radial distribution function, g(sigma), at contact with a hard sphere assumption. The apparent bimolecular rate constant, k(bim,0), for the quenching in the solvent cage was evaluated by extrapolating to g(sigma)eta = 0 in the plot of g(sigma)/k(q) against g(sigma)eta, and it was found that k(bim,0) decreased with increasing the radius of the solvent molecule. From the solvent size dependence of k(bim,0), the solvent cage effect was discussed phenomenologically.  相似文献   
313.
A comprehensive two-dimensional capillary supercritical fluid chromatography method was developed. The interface consisted of a ten-port valve, a capillary trap and two fused silica restrictors. The primary column was operated in stop-flow mode: the flow in the primary column was stopped during the separation of the second dimension. The pressure of the system was controlled with a single pump. The pressure program was synchronized with the sampling: the pressure was only ramped up during the sampling time, when the primary column effluent was transferred from the first dimension to the trap, and was maintained constant during the second-dimension separation. All of the operations were automated using in-house software. The separation characteristics of the present system can be readily regulated by changing the size of the restrictors and/or the programmed pressure rate. The use of synchronized pressure programming allowed the sampling duration and/or the second-dimension separation time (and therefore, the total analysis time) to be changed without affecting the separation pattern. Widely different selectivities were attained depending on the combination of the three columns with different polarities (such as the nonpolar DB-1, the medium-polarity DB-17 and the polar DB-WAX columns) used. The present system afforded improved separation and identification capabilities for analytes in complex mixtures.  相似文献   
314.
The gamma-radiation-induced polymerization of ethylene in the presence of 13–30 ml of tert-butyl alcohol was carried out under a pressure of 120–400 kg/cm2 at a dose rate of 1 × 103 to 2.5 × 104 rad/hr at 30°C with a 100 ml reactor. The polymerization rate and the molecular weight of the polymer increased with reaction time and pressure and decreased with amount of tert-butyl alcohol. The polymer yield increased almost proportionally with the dose rate, while the molecular weight was almost independent of it. These results were graphically evaluated, and the rate constants of initiation, propagation, and termination for various conditions were determined. No transfer was observed. On the basis of these results the role of tert-butyl alcohol in the polymerization is discussed.  相似文献   
315.
Second-order rate constants have been measured for reactions of 2,4-dinitrophenyl X-substituted benzenesulfonates with a series of alicyclic secondary amines. The reaction proceeds through S-O and C-O bond fission pathways competitively. The S-O bond fission occurs more dominantly as the amine basicity increases and the substituent X in the sulfonyl moiety becomes more strongly electron withdrawing, indicating that the regioselectivity is governed by the amine basicity as well as the electronic nature of the substituent X. The S-O bond fission proceeds through an addition intermediate with a change in the rate-determining step at pK(a) degrees = 9.1. The secondary amines are more reactive than primary amines of similar basicity for the S-O bond fission. The k(1) value has been determined to be larger for reactions with secondary amines than with primary amines of similar basicity, which fully accounts for their higher reactivity. The second-order rate constants for the S-O bond fission result in linear Yukawa-Tsuno plots while those for the C-O bond fission exhibit poor correlation with the electronic nature of the substituent X. The distance effect and the nature of reaction mechanism have been suggested to be responsible for the poor correlation for the C-O bond fission pathway.  相似文献   
316.
The recently reported sensing characteristics of the mixed-potential-type yttria-stabilized zirconia (YSZ)-based hydrocarbon (HC) sensor attached with ZnCr2O4-sensing electrode (SE) were found to be changed after the 10-day operation at 550 °C under the wet condition (5 vol.% water vapor). To improve the stability of the present sensor, the several modifications of the SE material by adding YSZ powder were examined. As a result, the sensor using the laminated (ZnCr2O4/YSZ)-SE gave the stable electromotive force (emf) response against 100 ppm C3H6 at 550 °C for about one month examined. Based on the scanning electron microscopy (SEM) observation and the AC complex-impedance measurements, it was concluded that the stable behavior of the sensor using the laminated (ZnCr2O4/YSZ)-SE was provided by the stabilization of the interface between ZnCr2O4 grains and YSZ particles. The fabricated sensor exhibited the linear dependence of sensitivity on the logarithm of either C3H6 concentration (in the range of 20-800 ppm) or mixtures of various hydrocarbons (HCs) (in the range of 90-2600 ppmC). In addition, the emf response was not altered by the change of O2 (2-20 vol.%), H2O (0-10.8 vol.%) and CO2 (0-20 vol.%) concentrations, and no interference of other gases (CO, NO, NO2, H2, and CH4) was observed.  相似文献   
317.
The surface cation composition of nanoscale metal oxides critically determines the properties of various functional chemical processes including inhomogeneous catalysts and molecular sensors. Here we employ a gradual modulation of cation composition on a ZnO/(Cu1−xZnx)O heterostructured nanowire surface to study the effect of surface cation composition (Cu/Zn) on the adsorption and chemical transformation behaviors of volatile carbonyl compounds (nonanal: biomarker). Controlling cation diffusion at the ZnO(core)/CuO(shell) nanowire interface allows us to continuously manipulate the surface Cu/Zn ratio of ZnO/(Cu1−xZnx)O heterostructured nanowires, while keeping the nanowire morphology. We found that surface exposed copper significantly suppresses the adsorption of nonanal, which is not consistent with our initial expectation since the Lewis acidity of Cu2+ is strong enough and comparable to that of Zn2+. In addition, an increase of the Cu/Zn ratio on the nanowire surface suppresses the aldol condensation reaction of nonanal. Surface spectroscopic analysis and theoretical simulations reveal that the nonanal molecules adsorbed at surface Cu2+ sites are not activated, and a coordination-saturated in-plane square geometry of surface Cu2+ is responsible for the observed weak molecular adsorption behaviors. This inactive surface Cu2+ well explains the mechanism of suppressed surface aldol condensation reactions by preventing the neighboring of activated nonanal molecules. We apply this tailored cation composition surface for electrical molecular sensing of nonanal and successfully demonstrate the improvements of durability and recovery time as a consequence of controlled surface molecular behaviors.

Unexpected features of surface Cu2+ on ZnO/(Cu1−xZnx)O nanowires for molecular transformation and electrical sensing of carbonyl compounds were found.  相似文献   
318.
Osteoclasts are giant polykaryons responsible for bone resorption. Because an enhancement or loss of osteoclast function leads to bone diseases such as osteoporosis and osteopetrosis, real-time imaging of osteoclast activity in vivo can be of great help for the evaluation of drugs. Herein, pH-activatable chemical probes BAp-M and BAp-E have been developed for the detection of bone-resorbing osteoclasts in vivo. Their acid dissociation constants (pK(a)) were determined as 4.5 and 6.2 by fluorometry in various pH solutions. These pK(a) values should be appropriate to perform selective imaging of bone-resorbing osteoclasts, because synthesized probes cannot fluoresce intrinsically at physiological pH and the pH in the resorption pit is lowered to about 4.5. Furthermore, BAp-M and BAp-E have a bisphosphonate moiety that enabled the probes to localize on bone tissues. The hydroxyapatite (HA) binding assay in vitro was, therefore, performed to confirm the tight binding of the probes to the bone tissues. Our probes showed intense fluorescence at low pH values but no fluorescence signal under physiological pH conditions on HA. Finally, we applied the probes to in vivo imaging of osteoclasts by using intravital two-photon microscopy. As expected, the fluorescence signals of the probes were locally observed between the osteoclasts and bone tissues, that is, in resorption pits. These results indicate that our pH-activatable probes will prove to be a powerful tool for the selective detection of bone-resorbing osteoclasts in vivo, because this is the first instance where in vivo imaging has been conducted in a low-pH region created by bone-resorbing osteoclasts.  相似文献   
319.
The active metal template (AMT) strategy is a powerful tool for the formation of mechanically interlocked molecules (MIMs) such as rotaxanes and catenanes, allowing the synthesis of a variety of MIMs, including π-conjugated and multicomponent macrocycles. Cycloparaphenylene (CPP) is an emerging molecule characterized by its cyclic π-conjugated structure and unique properties. Therefore, diverse modifications of CPPs are necessary for its wide application. However, most CPP modifications require early stage functionalization and the direct modification of CPPs is very limited. Herein, we report the synthesis of a catenane consisting of [9]CPP and a 2,2′-bipyridine macrocycle as a new CPP analogue that contains a reliable synthetic scaffold enabling diverse and concise post-modification. Following the AMT strategy, the [9]CPP-bipyridine catenane was successfully synthesized through Ni-mediated aryl-aryl coupling. Catalytic C−H borylation/cross-coupling and metal complexation of the bipyridine macrocycle moiety, an effective post-functionalization method, were also demonstrated with the [9]CPP-bipyridine catenane. Single-crystal X-ray structural analysis revealed that the [9]CPP-bipyridine catenane forms a tridentated complex with an Ag ion inside the CPP ring. This interaction significantly enhances the phosphorescence lifetime through improved intermolecular interactions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号